Attenuation Correction of L-shell X-ray Fluorescence Computed Tomography Imaging

نویسندگان

  • Liu Long
  • Huang Yang
چکیده

X-ray fluorescence computed tomography (XFCT) is an experimental technique that can reconstruct the distribution of elements within the sample from the measurement of fluorescence stimulated from the sample[1]. The sample is irradiated with a x-ray beam, of which the energy is greater than the K-shell energy or L-shell energy of the interest elements. These x rays undergo photoelectric interaction and stimulate fluorescence of atoms. An energy-discriminating detector is placed at 90-deg. to detect the fluorescence undergoing attenuation for minimizing the effect by Compton Scattering[2]. Each element has its own fluorescence, and intensity of fluorescence can reflect content of element. The distribution of interest elements in sample can be reconstructed with measurement of fluorescence when the sample is scanned and rotated if attenuation can be neglected[3]. To reconstruct more accurate element distribution image, attenuation correction is necessary[4, 5]. Hogan presents a method about FBP with attenuation correction in the XFCT reconstruction, in which attenuation coefficient distribution at incident energy and fluorescence energy must be known[6]. Then Golosio comes up with a method that solves the attenuation problem combining x-ray fluorescence, Compton and transmission tomography[7]. La Riviere develops an alternating-update iterative reconstruction algorithm based on maximizing a penalized Poisson likelihood objective function[8]. In this work, the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computed tomography based attenuation correction in PET/CT: Principles, instrumentation, protocols, artifacts and future trends

  The advent of dual-modality PET/CT imaging has revolutionized the practice of clinical oncology, cardiology and neurology by improving lesions localization and the possibility of accurate quantitative analysis. In addition, the use of CT images for CT-based attenuation correction (CTAC) allows to decrease the overall scanning time and to create a noise-free attenuat...

متن کامل

Evaluation of effect of gold nanorods and spherical gold nanoparticles of different sizes on X-ray attenuation in computed tomography

Introduction: To date, gold nanoparticles (GNPs) have been demonstrated to have great potential as contrast agent for CT imaging and therapeutics. This study was designed to evaluate any effect on X-ray attenuation that might result from using GNPs with a variety of size, surface chemistries and shapes.   Materials and Methods: Spherical GNPs and gold nanorod...

متن کامل

An iterative method to estimate x-ray attenuation coefficients in computed tomography

Introduction: The basis of image formation in Computed Tomography (CT) lies in the x-ray linear attenuation coefficient of the scanned material. Compton scattering and photoelectric effect are the dominant interactions of the x-ray photons with the subject, in the range of diagnostic radiology. These two coefficients are important in tissue characterization by Dual-Energy CT (D...

متن کامل

Validation of computed tomography-based attenuation correction of deviation between theoretical and actual values for four computed tomography scanners

Objective: In this study, we aimed to validate the accuracy of computed tomography-based attenuation correction (CTAC) using the bilinear scaling method.Methods: The measured attenuation coefficient (μm) was compared to a theoretical attenuation coefficient (μt ) using four different CT scanners and an RMI 467 phantom. The effective energy of the CT beam X-rays was calculated, using the aluminu...

متن کامل

Evaluation of multifunctional targeted gold nanoparticles on X-ray attenuation in nasopharyngeal cancer cells by X- ray imaging

Introduction: Head-and-neck cancer is the sixth most common cancer worldwide with the number of cases consistently increasing in developing countries. Successful development of effective, safe and cost effective nanoprobes for head-and-neck cancer targeting imaging is a big challenge. This study is aimed to develop cysteamine-folate conjugated gold nanoparticles (F-Cys-AuNPs) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014